生成式推荐进入深水区,聚焦核心瓶颈与范式创新:今日多篇论文围绕生成式推荐(Generative Rec)展开,研究重点已从“是否可行”转向“如何优化”。核心议题包括:1)基础设施优化,如腾讯提出端到端语义ID生成(UniSID)以解决两阶段压缩的固有缺陷;2)训练稳定性与数据质量,如腾讯的DRPO从理论上解决离线RL的模型崩溃问题;3)解码与RL微调效率,如腾讯的V-STAR解决概率-奖励错配。这表明业界正系统性地攻克生成式推荐落地中的关键工程与算法挑战。; LLM深度赋能推荐系统,从特征理解走