- 标签:
- 日报 (80)
- AI (42)
- 技术趋势 (42)
- 推荐系统 (40)
- 思考 (2)
- 理论分析 (2)
- 排序模型 (2)
- 推荐 (1)
- 深度学习 (1)
- 强化学习 (1)
- 思维模型 (1)
- Transformer (1)
- 管理 (1)
2017 年,Ilya Sutskever 读到《Attention Is All You Need》时,立即意识到”这就是我们需要的一切”。OpenAI 随即放弃了 RNN/LSTM 路线,全面转向 Transformer,催生出整个 GPT 系列。Transformer 的并行能力让他们得以实现一直相信的 Scaling 路径。八年后的今天,推荐系统终于走到了同样的路口。 2024 年之前,推荐领域有了 HSTU、TIGER 这样的工作,但大多数团队还在观望。2025 年,我观察到一个明显的转变:大家开始认真地把排序模型 Dense Scaling Up,搞生成式召回和端到端推荐。这很像 2017 年——当时大家忙着把 LR/GBDT/FM 切换到 Deep Model 和双塔,切换过程持续了一两年,之后再没人回头。我的判断是,2026 年将是推荐系统 All-In Transformer 的一年,不改变就落后。